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Proportional  feedback c ontrol  

The following ordinary differential equations (ODEs) describe proportional feedback control 

(Figure 2A in main text): 

dY/dt = k0 + k1S – k2GY, (1) 

n1 n1 n1
dG/dt = k3T /( J1 + T ) – k4G, (2) 

n2 n2 n2
dT/dt = k5Y /( J2 + Y ) – k6T. (3) 

For simplicity, we omitted posttranslational feedback (dashed line in Figure 2A in main text); 

however, its exclusion does not alter the basic conclusions. The Hill terms in Eqs. (2) and (3) 

describe ultrasensitive induction of G by T and ultrasensitive activation of T by Y, respectively. 

The steady-state value of T is related to the steady-state value of Y, and the steady-state value of 

G is in turn related to the steady-state value of T. This interrelationship ensures that the state of 

the controller reflects the current value of the controlled variable. After an initial perturbation, 

proportional feedback allows the controlled variable Y to dynamically adapt to the continued 

presence of stressor S (Figure 2B in main text, S=0.3, 0.6, 0.9, and 1.2 with increasingly darker 

red lines). The “behind-the-scene” process underlying adaptation is activation of T leading to 

induction of G. The ability of Y to return close to baseline depends on the degree of 

ultrasensitivity, or signal amplification, of the feedback loop, provided by the Hill coefficients n1 

and n2 (Zhang and Andersen 2007). Proportional feedback control does not produce perfect 

adaptation (i.e., a true threshold) and the steady-state Y vs. S curve in the low-dose region is 
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monotonically increasing (Zhang and Andersen 2007). However, with sufficiently high 

amplification, the low-dose region becomes virtually indistinguishable from the baseline, thus 

giving a very low response in this portion of the curve (Figure 2C in main text). At high stressor 

levels where the induction of G becomes saturated, Y rises sharply from the baseline. Model 

parameters: k0=10, k1=10, k2=10, k3=0.2, k4=0.1, k5=500, k6=0.5, J1=1, J2=2, n1=10, n2=10. 

SBML code for this model is provided in a separate Supplemental Material file (see 

SBML_1_Proportional_Feedback_Control.xml). 

Integral  feedback c ontrol  

The following ODEs describe integral feedback control (Figure 2D in main text):     

dY/dt = k0  + k1S – k 2GY,       (4)  

dG/dt = k3T/( J+ T) – k 4G,       (5)  

dT/dt = k5Y – k 6.        (6)  

As for proportional feedback control, we simplify the model code by excluding any 

posttranslational regulation. The degradation step for T in Eq (6) is a zero-order process 

(represented by the -k6 term), which provides the integrator function. T would reach a steady 

state only when Y settles to a preset value Y0=k6/k5 (baseline level). When Y rises above the 

baseline level (Y0) due to perturbation by S, the production rate of T (k5Y) exceeds the 

degradation rate (k6). Thus, T increases, and the amount of newly synthesized T becomes the 

time integral of the difference between the production rate and degradation rate. Increased T 

induces G to a higher level to reduce Y. As long as Y is still above the baseline, the production 

rate of T continues to exceed its degradation rate. As a result, T continues to increase leading to 
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further induction of G, until Y returns to the baseline Y0 (Figure 2E in main text), where the 

system reaches a steady state. This way integral control produces perfect adaptation. The stressor 

level at which the integral control fails, as the induction of G reaches a maximum, defines the 

threshold of S. At stressor levels below the threshold, the controlled variable settles to a steady-

state level identical to the non-stressed baseline level (Figure 2F in main text). Model parameters: 

k0=10, k1=10, k2=10, k3=0.2, k4=0.1, k5=0.5, k6=0.5, J=1. SBML code for this model is provided 

in a separate Supplemental Material file (see SBML_2_Integral_Feedback_Control.xml). 

Incoherent  feedforward  control  

The  following ODEs  describe  incoherent  feedforward control  (Figure  3A, 3D  and 3G  in main 

text):   

dY/dt = k0  + k1S – k 2GY,       (7)  

dG/dt = k3  + k4T – k 5G,       (8)  

dT/dt = k6S(Ttot  – T) – (k  7(Ttot  – T) + k 8)T.     (9)  

In contrast to the feedback motifs where Y regulates T, here the stressor S directly regulates T. 

An autocatalytic covalent modification process driven by S activates T. The magnitude of the 

feedforward signaling strength (referred to as gain) quantifies the induction of G by S (via T). 

Depending on the value of the feedforward gain compared to the perturbation gain (change in Y 

directly caused by S), there are three different scenarios. When the feedforward gain is smaller 

than the perturbation gain (Figure 3A in main text), adaptation is partial (Figure 3B in main text) 

and the steady-state dose-response curve is close to but not identical to the baseline in the low-

dose region (Figure 3C in main text). When the feedforward gain matches the perturbation gain 
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(Figure 3D in main text), there is perfect adaptation (Figure 3E in main text) leading to a 

threshold (Figure 3F in main text). The threshold occurs when T or G reach their limit of 

activation. When the feedforward gain exceeds the perturbation gain (Figure 3G in main text), 

the induced stress-gene activity overcompensates for the change of Y by S. As a result, there is 

over-adaptation (Figure 3H in main text), resulting in a hormetic, J-shaped dose response (Figure 

3I in main text) (Kaplan et al. 2008; Kim et al. 2008). In each of the three cases, the value of k4 

was varied (k4 =0.09, 0.1, and 0.11 respectively) to alter the feedforward gain. Model parameters: 

k0=10, k1=10, k2=10, k3=0.1, k4=0.1, k5=0.1, k6=1, k7=1, k8=0.0001, Ttot=1. SBML code for this 

model is provided in a separate Supplemental Material file (see 

SBML_3_Incoherent_Feedforward_Control.xml). 

Saddle-node bifurcation  

The  following ODEs  describe  positive  feedback with saddle-node  bifurcation (Figure  4A  in main 

text):   

dG1/dt = k1G2S – k 2G1,       (10)  

n n n
dG2/dt = k3  + k4G1 /( J1 + G1 ) – k  5G2.     (11)  

Here  G1  and G2  are  mutually-activating genes  forming a  positive  feedback loop. S  is  an external  

signal stimulating G1. The Hill function in Eq. (11) introduces ultrasensitivity, a necessary 

nonlinear term for generating bistability (Angeli et al. 2004; Zhang et al. 2013). Depending on 

the level of S, both G2 (Figure 4B in main text) and G1 (not shown) settle into one of two discrete 

states. The steady-state dose response behavior between S and G2 displays a saddle-node 

bifurcation (Figure 4C in main text). At low levels of S, G2 increases slightly as S increases. 
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When a threshold value of S (“on-threshold”) is exceeded, the positive feedback pushes the 

system to the second stable steady state with G2 and G1 switching abruptly to higher levels. Once 

in the on-state, the bistable system does not switch off immediately to the off-state even when S 

is reduced. The system switches off only when S decreases to a further lower level (“off-

threshold”). Between the off- and on-threshold values of S, the system can be either on or off 

(thus the term “bistable”), with unstable saddle-node points (blue dashed line in Figure 4C in 

main text) lying in between. Model parameters: k1=0.392, k2=1, k3=1, k4=9, k5=1, J1=1, n=5. 

SBML code for this model is provided in a separate Supplemental Material file (see 

SBML_4_Saddle_Node_Bifurcation_I.xml). 

An alternative  network motif  structure  to generate  saddle-node  bifurcations  is  a  double-negative  

feedback loop (Figure 4D in main text), described with the f   ollowing ODEs:  

dG1/dt = k1J1/( J1+ G2)  – k 2G1 – k 3SG1,     (12)  

n n n
dG2/dt = k4  + k5J2 /( J2 + G1 ) – k 6G2.     (13)  

The dynamic and bifurcation behaviors of the system are similar to the positive feedback 

example except that G1 changes in an opposite direction compared to G2 (Figure 4E and 4F in 

main text). Model parameters: k1=40, k2=1, k3=1.72, k4=1, k5=9, k6=1, J1=0.2, J2=1, n=5. SBML 

code for this model is provided in a separate Supplemental Material file (see 

SBML_4_Saddle_Node_Bifurcation_II.xml). 

Pitchfork  bifurcation  

The following ODEs describe a supercritical pitchfork bifurcation motif (Figure 5A in main text): 
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n n n
dG1/dt = k1 + (k2S + k3)J /( J  + G2 ) – k 4G1,     (14)  

n n n
dG2/dt = k1 + (k2S + k3)J /( J  + G1 )  – k 4G2.     (15)  

The  bifurcation diagrams  show  the  behavior of  gene  G1  (Figure  5C  in main text) and gene  G2  

(Figure  5E  in main text) with respect  to signal  S. In the  absence  of  S, G1  and G2  have  equivalent  

low  levels  of  expression because  of  the  symmetry in the  system. Since  S  has  the  same  effect  on 

both of  them, G1  and G2  increase  gradually with increasing S  but  remain equal. As  S  increases  

further, the  system  bifurcates, where  any slight  asymmetry between the  two genes  leads  to 

activation of  one  gene  and repression of  the  other due  to mutual-inhibition. This  stage  is  

characterized by bistability:  the  existence  of  two mutually-exclusive  stable  steady states  (i.e., 

high G1  /  low  G2  or low  G1  /  high G2). Unlike  the  abrupt  saddle-node  bifurcation, here  the  

transition from  monostability to bistability occurs  gradually through the  supercritical  pitchfork 

bifurcation (Strogatz  1994). The  dynamics  of  the  pitchfork bifurcation system  in response  to 

various  levels  of  S  is  shown in Figure  5B and 5D  in main text. For these  simulations, the  system 

starts  with a  small  asymmetry:  the  initial  value  of  G1  is  slightly higher than G2. For subthreshold 

S  levels, both G1  and G2  rise  gradually. Once  S  exceeds  the  pitchfork bifurcation threshold, the  

activation of  G1  occurs  first, leading to downregulation of  G2. Model  parameters:  k1=0.75, 

k2=0.77, k3=0.5, k4=1, J=1, n=4.  SBML  code  for this  model  is  provided in a  separate  

Supplemental Material file (see SBML_5_Pitchfork_Bifurcation.xml).  

Transcritical  bifurcation  

The following ODEs describe two different transcritical bifurcations with thresholds. The first 

gives behavior equivalent to that in Figure 6A in main text: 
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2
dR/dt = k1SR – k 2R  – k 3R .       (16)  

Here gene R positively autoregulates its own expression and requires both R and the external 

signal, S, for induction. Two terms describe degradation of R - a linear term k2R and a second 

term k3R2 that represents enhanced degradation as R increases. This system displays two steady 

states, a horizontal line depicted by Rss=0 and a straight, slanted line depicted by Rss=(k1S-k2)/k3. 

The bifurcation diagram in Figure 6C in main text shows the stability of the two steady states. At 

low levels of S, Rss=0 is the stable steady state. Simultaneously, there is an imaginary unstable 

steady state with negative values of R. As S increases beyond the threshold, the two steady states 

exchange stability. The steady state represented by the horizontal line becomes unstable, while 

the one represented by the slanted line becomes the stable steady state. Since real-world systems 

only settle to stable steady states, the dose response of this transcritical bifurcation motif (Figure 

6A in main text) follows the solid red line in Figure 6C in main text, which has a threshold. 

Model parameters: k1=1, k2=1, k3=1.2. SBML code for this model is provided in a separate 

Supplemental Material file (see SBML_6_Transcritical_Bifurcation_I.xml). 

The ODE below describes a transcritical bifurcation motif as in Figure 6D in main text: 

dR*/dt = k0R*R + k1SR*R – k2R*. (17) 

This ODE describes reversible modifications of protein substrate R to R* in an autocatalytic 

manner. The total amount of R and R* remains constant at Rtot = R + R*. A transcritical 

bifurcation results as external signal S increases (Figure 6F in main text). As long as S is below 

the threshold, R* remains at zero. As S crosses the threshold, R* increases in a nonlinear fashion. 
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Model parameters: k0=0.5, k1=0.5, k2=4. SBML code for this model is provided in a separate 

Supplemental Material file (see SBML_6_Transcritical_Bifurcation_II.xml). 

Molecular  titration  

The following ODEs describe a molecular titration motif (Figure 7A in main text):     

d[SR]/dt = k1S·R – k 2[SR],       (18)  

dG/dt = k3  + k4S – k 5G.       (19)  

External  signal  S  induces  gene  G. In addition, a  high-affinity inhibitor R titrates  S  away into an 

inactive  complex [SR]. In the  simulation, the  total  amount  of  free  R plus  R bound in the  [SR] 

complex is  constant  (Rtot  = R + [SR]). The  total  amount  of  free  S  plus  S  bound in  the  complex 

[SR], i.e., Stot  = S  + [SR], is  varied as  the  input  dose. Although this  is  not  a  threshold response, 

there  is  an input  dose  that  causes  a  steep change  in behavior with this  motif  (Figure  7C  in main 

text). At  low  levels  of  Stot, R sequesters  most  of  the  S  molecules  due  to the  high-affinity binding 

between S  and R. There  is  little  S  available  for inducing G. As  the  level  of  Stot  approaches  Rtot, 

all  R is  bound by S. Any further increase  in Stot  increases  free  S  dramatically leading to induction 

of  G  above  the  baseline. Model  parameters:  k1=100, k2=1, k3=1, k4=1, k5=1.  SBML  code  for this  

model  is  provided in a  separate  Supplemental  Material  file  (see  

SBML_7_Molecular_Titration.xml).    
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